Preparación de la unidad

• Resuelve las siguientes inecuaciones :

a)
$$3x + 7 - 5(2x-3) \ge \frac{x-1}{2} - 1$$

$$6x+14-10(2x-3) \ge x-1-2 \Leftrightarrow 6x+14-20x+30 \ge x-3 \Leftrightarrow 6x-20x-x \ge -3-14-30$$

$$-15x \ge -47 \iff 15x \le 47 \Rightarrow x \le \frac{47}{15}$$
 es decir $(-\infty, \frac{47}{15}]$

b)
$$\frac{2x-3}{8} - \frac{5x-1}{2} < -\frac{3x}{4}$$
 m.c.m.(2,4,8) = 8

 $2x - 3 - 4(5x - 1) < -6x \Leftrightarrow 2x - 3 - 20x + 4 < -6x \Leftrightarrow 2x - 20x + 6x < 3 - 4 \Leftrightarrow -12x < -1$ \Leftrightarrow 12x > 1 \Leftrightarrow x > 1/12 es decir el intervalo (1/12, +\infty)

c)
$$\frac{3(x-1)}{2} - x > \frac{x-3}{2}$$

 $3(x-1) - 2x > x - 3 \Leftrightarrow 3x - 3 - 2x > x - 3 \Leftrightarrow 3x - 2x - x > 3 - 3 \Leftrightarrow 0 > 0$ lo que no es verdad, luego no tiene solución.

$$\Diamond \Diamond \Diamond \Diamond \Box \Box \odot \Box \Box \Diamond \Diamond \Diamond \Diamond$$

2 Resuelve las siguientes inecuaciones :

a)
$$x^2 + 1 \le 0$$

 $x^2 \le -1$, lo que no se cumple pues $x^2 \ge 0$, positivo o nulo, luego no tiene solución.

b)
$$(x - 3)^2 \le 4$$

O x^2 - 6x + 9 \leq 4 \Leftrightarrow x^2 - 6x + 5 \leq 0 y para resolver esta inecuación resolvemos primero la ecuación x^2 - 6x + 5 = 0 \Leftrightarrow x = 1 y x = 5, teniendo tres intervalos posibles (- ∞ , 1), [1, 5] y (5,∞), para saber cuáles de los tres son válidos, tal vez la forma más rápida sea dar un valor dentro de los intervalos :

•
$$x = 0 \in (-\infty, 1)$$
 ⇒ $0^2 - 6 \cdot 0 + 5 = 5 > 0$ no válido

•
$$x = 2 \in [1, 5] \Rightarrow 2^2 - 6.2 + 5 = -3 < 0$$
 válido. Solución : [1, 5]

$$O |x - 3| \le 2$$
; $-2 \le x \le 2$, es decir $-2 + 3 \le x \le 2 + 3$; $1 \le x \le 5$, intervalo [1, 5].

c)
$$2(5 - x^2) > 3x$$

10 - $2x^2 > 3x \Rightarrow -2x^2 - 3x + 10 > 0$, resolviendo la ecuación tenemos tres intervalos : $(-\infty,\frac{-3-\sqrt{89}}{4}),[\frac{-3-\sqrt{89}}{4},\frac{-3+\sqrt{89}}{4}]$ y $(\frac{-3+\sqrt{89}}{4},+\infty)$ y es positiva en el segundo pues para x = 0 queda 10 > 0. La solución es, pues :

$$\left[\frac{-3-\sqrt{89}}{4}, \frac{-3+\sqrt{89}}{4}\right]$$

$$\Diamond \Diamond \Diamond \Diamond \Box \Box \Diamond \Box \Box \Diamond \Diamond \Diamond \Diamond$$

3 Halla la derivada de las funciones :

a)
$$f(x) = 4\ln x + x^2$$
; $f'(x) = (4\ln x)' + (x^2)' = 4(\ln x)' + 2x = 4 \cdot \frac{1}{x} + 2x = \frac{4}{x} + 2x$

b)
$$g(x) = \frac{x \cdot 2}{x^2 - 4}$$
; $g'(x) = \frac{(x^2)'(x^2 - 4) - x^2(x^2 - 4)'}{(x^2 - 4)^2} = \frac{2x(x^2 - 4) - x^2 \cdot 2x}{(x^2 - 4)^2} = \frac{2x^3 - 8x - 2x^3}{(x^2 - 4)^2} = \frac{-8x}{(x^2 - 4)^2}$

c)
$$h(x) = \sqrt{x^2 - 9}$$
; $h'(x) = \frac{(x^2 - 9)'}{2\sqrt{x^2 - 9}} = \frac{2x}{2\sqrt{x^2 - 9}} = \frac{x\sqrt{x^2 - 9}}{x^2 - 9}$

d)
$$k(x) = x^2 e^x$$
; $k'(x) = (x^2)' \cdot e^x + x^2 \cdot (e^x)' = 2x \cdot e^x + x^2 \cdot e^x = xe^x(x+2)$

e)
$$m(x) = tgx^2$$
; $m'(x) = \frac{2x}{\cos^2 x^2} = 2x \sec^2 x^2 = 2x(1 + tg^2 x^2)$

f)
$$i(x) = \frac{\sqrt{x}}{e^x}$$
; $i'(x) = \frac{(\sqrt{x})' \cdot e^x - \sqrt{x} \cdot (e^x)'}{(e^x)^2} = \frac{\frac{1}{2\sqrt{x}} e^x - \sqrt{x} \cdot e^x}{(e^x)^2} = \frac{\frac{e^x (1-2x)}{2\sqrt{x}}}{(e^x)^2} = \frac{e^x (1-2x)}{2\sqrt{x} (e^x)^2} = \frac{1-2x}{2\sqrt{x}}$

$$\Diamond \Diamond \Diamond \Diamond \Box \Box \odot \Box \Box \Diamond \Diamond \Diamond \Diamond$$

DERIVADA Y MONOTONÍA DE UNA FUNCIÓN.

• Estudia el crecimiento o decrecimiento de las siguientes funciones en los puntos de abscisas indicados

a)
$$f(x) = 2x^3 - x^2$$
, en $x = 2$; $f'(x) = 6x^2 - 2x \Rightarrow f'(2) = 6 \cdot 2^2 - 2 \cdot 2 = 20 > 0 \Rightarrow \nearrow$

b)
$$f(x) = \frac{x^2+1}{x-1}$$
, en $x = 5$; $f'(x) = \frac{2x(x-1)-x^2-1}{(x-1)^2} = \frac{x^2-2x-1}{(x-1)^2}$; $f'(5) = \frac{5^2-2\cdot5-1}{4^2} = \frac{7}{8} > 0 \Rightarrow \nearrow$

c)
$$f(x) = \sqrt{2-x^3}$$
, en $x = 1$; $f'(x) = \frac{-3x^2}{2\sqrt{2-x^3}} \Rightarrow f'(1) = \frac{-3\cdot 1^3}{2\sqrt{2-1^3}} = -\frac{3}{2} < 0 \Rightarrow \sqrt{\frac{3}{2}}$

2 Estudia los extremos relativos de las funciones del ejercicio anterior.

En el ejercicio anterior ya hemos hallado sus derivadas.

a)

Resolvemos la ecuación f '(x) = 0

$$6x^2-2x=0 \Leftrightarrow 2x(3x-1)=0 \Leftrightarrow \left\{ \begin{array}{ll} 2x=0 & \Rightarrow x=0 \\ 3x-1=0 \Rightarrow x=\frac{1}{3} \end{array} \right\}$$

- Hallamos la derivada segunda de la función: f''(x) = 12x 2
- Analizamos el signo de la segunda derivada para los valores obtenidos al igualar a cero la derivada primera :

$$f''(0) = 12.0 - 2 = -2 < 0 \Rightarrow f \text{ tiene un máximo en (0, f(0))=(0, 0)}$$

f "
$$(1/3) = 12 \cdot (1/3) - 2 = 4 - 2 = 2 > 0 \Rightarrow$$
 f tiene un mínimo en $(1/3, f(1/3)) = (1/3, -1/27)$

b)

Resolvemos la ecuación f '(x) = 0

$$\frac{x^2 - 2x - 1}{(x - 1)^2} = 0 \iff x^2 - 2x - 1 = 0 \Rightarrow \begin{cases} x = 1 - \sqrt{2} \approx -0^{1/4} \\ x = 1 + \sqrt{2} \approx 2^{1/4} \end{cases}$$

Estudiamos la monotonía mediante tabla, teniendo en cuenta que al ser f una función racional tiene una discontinuidad en x -1 = 0, es decir x = 1:

X	(- ∞, - 0'41)	-0'41	(- 0'4, 2'41)	2'41	(2'41,∞)
f '(x)	> 0	0	< 0	0	> 0
f (x)	Ø	\cap	₪	U	Ø.

En donde hemos utilizado, para estudiar el signo de cada intervalo:

f '(-1) =
$$(1+2-1)/4=1/2 > 0$$

f '(0) = -1 < 0
f '(3) = $(9-6-1)/4 = \frac{3}{4} > 0$

$$f'(3) = (9 - 6 - 1)/4 = \frac{9}{4} > 0$$

Tenemos un máximo en (- 0'41 , f(-0'41)) y un mínimo en (2'41, f(2'41))

c)

 \odot Resolvemos f'(x) = 0

$$\frac{-3x^2}{2\sqrt{2-x^3}} = 0 \Leftrightarrow 3x^2 = 0 \Leftrightarrow x = 0$$

 Estudiamos la tabla (que es más corto que hallar la derivada segunda, que además no decide pues saldrá también cero)

X	(∞, 0)	0	$(0, 2^{1/3})$
f '(x)	< 0	0	< 0
f (x)	₪	No	₪

Sólo llegamos hasta 2^{1/3} pues al ser irracional su dominio llega hasta ahí.

En donde para estudiar el signo hemos usado :

$$f'(-1) = -3/2 < 0$$
 y $f'(1) = -3/2 < 0$

No tiene máximos ni mínimos relativos.

$$\diamondsuit \diamondsuit \diamondsuit \blacksquare \blacksquare \bullet \blacksquare \blacksquare \bullet \diamondsuit \diamondsuit \diamondsuit$$

3 Determina los intervalos de monotonía de las siguientes funciones :

a)
$$f(x) = x^3 - 3x^2 - 9x + 1$$

O Discontinuidades: No tiene pues es una función polinómica

O Ceros de la primera derivada:

$$f'(x) = 3x^2 - 6x - 9 \Rightarrow x^2 - 2x - 3 = 0 \Longleftrightarrow \left\{ \begin{array}{l} x = -1 \\ x = 3 \end{array} \right\}$$

O Intervalos : $(-\infty, -1)$, (-1, 3) y $(3, \infty)$

O Tabla de monotonía :

Para comprobar el signo de la derivada en cada intervalo, damos un valor perteneciente a cada intervalo:

f '(-2) =
$$3 \cdot (-2)^2$$
 -6·(-2) -9 = 12+12-9 = 15 > 0
f '(0) = -9 < 0
f '(4) = $3 \cdot 4^2$ - 6·4 -9 = 48 - 24 - 9 = 15 > 0

X	(-∞, -1)	-1	(-1, 3)	3	(3, ∞)
f '(x)	> 0	0	< 0	0	> 0
f (x)	Ø	Λ	₪	U	₽.

b)
$$f(x) = \frac{x-1}{2x+1}$$

O *Discontinuidades*: Al ser racional son los valores que anulan el denominador $2x + 1 = 0 \Leftrightarrow x = -1/2$.

O Ceros de la primera derivada:

$$f'(x) = \frac{2x+1-2(x-1)}{(2x+1)^2} = \frac{2x+1-2x+2}{(2x+1)^2} = \frac{3}{(2x+1)^2} \neq 0$$
 no tiene

O Intervalos: (- ∞, -1/2) y (-1/2,+∞)

O Tabla de monotonía:

Para comprobar el signo de la derivada en cada intervalo, damos un valor perteneciente a cada intervalo:

$$f'(-1) = 3 > 0$$

 $f'(0) = 3 > 0$

X	(- ∞, - 1/2)	-1/2	(-1/2,∞)
f '(x)	> 0		> 0
f (x)	₽.	A. V.	Ø

c)
$$f(x) = \sqrt{x^2 - 1}$$

- O Discontinuidades: Los puntos que no pertenecen a su dominio que son (-1, 1) que hacen el radicando negativo, solución de inecuación $x^2 1 \le 0$
- O Ceros de la primera derivada:

$$f'(x) = \frac{2x}{2\sqrt{x^2-1}} \Rightarrow \frac{x}{\sqrt{x^2-1}} = 0 \iff x = 0 \notin Dom(f)$$

- O Intervalos: (∞, -1] y [1, ∞)
- O Tabla de monotonía :

Para comprobar el signo de la derivada en cada intervalo, damos un valor perteneciente a cada intervalo:

$$f'(-2) = \frac{-2}{\sqrt{(-2)^2 - 1}} = \frac{-2}{\sqrt{3}} < 0$$

$$f'(2) = \frac{2}{\sqrt{4-1}} = \frac{2}{\sqrt{3}} > 0$$

X	(- ∞, - 1]	[1,∞)
f '(x)	< 0	> 0
f (x)	₪	Ø

d)
$$f(x) = e^{-x^2}$$

- O Discontinuidades: Continua en ℝ por ser exponencial.
- O Ceros de la primera derivada:

$$f'(x) = -2x \cdot e^{-x^2} \Rightarrow -2x \cdot e^{-x^2} = 0 \iff x = 0$$

- O Intervalos: $(-\infty, 0)$ y $(0, \infty)$
- O Tabla de monotonía :

Para comprobar el signo de la derivada en cada intervalo, damos un valor perteneciente a cada intervalo:

$$f'(-1) = -2 \cdot (-1) \cdot e^{-(-1)^2} = 2 \cdot e^{-1} = \frac{2}{e} > 0$$

$$f'(1) = -2 \cdot 1 \cdot e^{-1^2} = -2 \cdot e^{-1} = -\frac{2}{e} < 0$$

X	(- ∞, 0)	0	(0,∞)
f '(x)	> 0	0	< 0
f (x)	Ø	Λ	₪

4 Estudia la convexidad o concavidad de las funciones :

Hay que estudiar el signo de la segunda derivada en esos puntos.

a)
$$f(x) = x^3 - x^2$$
, en $x = -3$

$$f'(x) = 3x^2 - 2x$$
; $f''(x) = 6x - 2 \Rightarrow f''(-3) = 6 \cdot (-3) - 2 = -18 - 2 = -20 < 0 \Rightarrow$ Cóncava (\frown)

b)
$$f(x) = 2x^3 - 3x^2$$
, en $x = 0$

$$f'(x) = 6x^2 - 6x$$
; $f''(x) = 12x - 6 \Rightarrow f''(0) = 12.0 - 6 = -6 < 0 \Rightarrow$ Cóncava (~)

c)
$$f(x) = \frac{x^2+1}{x-1}$$
, en $x = 5$

$$f'(x) = \frac{2x(x-1)-(x^2+1)}{(x-1)^2} = \frac{2x^2-2x-x^2-1}{(x-1)^2} = \frac{x^2-2x-1}{(x-1)^2} \Rightarrow f''(x) = \frac{(2x-2)\cdot(x-1)^2-(x^2-2x-1)\cdot2\cdot(x-1)}{(x-1)^4} = \frac{2x^2-2x-x^2-1}{(x-1)^2} = \frac{x^2-2x-1}{(x-1)^2} \Rightarrow f''(x) = \frac{(2x-2)\cdot(x-1)^2-(x^2-2x-1)\cdot2\cdot(x-1)}{(x-1)^4} = \frac{x^2-2x-1}{(x-1)^2} = \frac{x^2-2x-1}{(x-1)^2} \Rightarrow f''(x) = \frac{(2x-2)\cdot(x-1)^2-(x^2-2x-1)\cdot2\cdot(x-1)}{(x-1)^4} = \frac{x^2-2x-1}{(x-1)^2} = \frac{x^2-2x$$

$$=\frac{(x-1)[(2x-2)(x-1)-2(x^2-2x-1)]}{(x-1)^4}=\frac{2x^2-4x+2-2x^2+4x+2}{(x-1)^3}=\frac{4}{(x-1)^3}\Rightarrow f''(5)=\frac{4}{4^3}=\frac{1}{4^2}>0\Rightarrow Cx$$

d)
$$f(x)$$
) $\sqrt{x^2-1}$, en $x=3$

$$f'(x) = \frac{2x}{2\sqrt{x^2-1}} = \frac{x}{\sqrt{x^2-1}} \Rightarrow f''(x) = \frac{\sqrt{x^2-1} - x \cdot \frac{2x}{2\sqrt{x^2-1}}}{x^2-1} = \frac{\frac{x^2-1-x^2}{\sqrt{x^2-1}}}{x^2-1} = \frac{-1}{(x^2-1)\sqrt{x^2-1}} \text{ , luego :}$$

$$f''(3) = \frac{-1}{(9-1)\sqrt{9-1}} = \frac{-1}{8\sqrt{8}} = \frac{-1}{16\sqrt{2}} < 0 \Rightarrow \text{C\'oncava (cc)}.$$

e)
$$f(x) = \sqrt{2-x^3}$$
, en $x = 1$

$$f'(x) = \frac{-3x^2}{2\sqrt{2-x^3}} \Rightarrow f''(x) = \frac{-6x \cdot 2\sqrt{2-x^3} - (-3x^2) \cdot \frac{-3x^2}{\sqrt{2-x^3}}}{4(2-x^3)} = \frac{\frac{-12x(2-x^3) - 9x^4}{\sqrt{2-x^3}}}{4(2-x^3)} = \frac{3x^4 - 24x}{4(2-x^3)\sqrt{2-x^3}} \Rightarrow$$

$$f''(1) = \frac{3-24}{4(2-1)\sqrt{2-1}} = \frac{-21}{4} < 0 \Rightarrow \text{C\'oncava (cc)}.$$

f)
$$f(x) = tg x$$
, en $x = \frac{3\pi}{4}$

$$f'(x) = \frac{1}{\cos^2 x} \Rightarrow f''(x) = -2\cos^{-3}x(-\text{sen}x) = \frac{2\text{sen}x}{\cos^3 x} \Rightarrow f''(\frac{3\pi}{4}) = \frac{2\text{sen}(\frac{3\pi}{4})}{\cos^3(\frac{3\pi}{4})} = \frac{2\cdot\frac{\sqrt{2}}{2}}{\left(-\frac{\sqrt{2}}{2}\right)^3} = -4$$

luego es Cóncava (cc)

5 Estudia los puntos de inflexión de las funciones del ejercicio anterior :

Para el estudio de los puntos de inflexión hay que estudiar si la derivada tercera para los valores que anulan la segunda no son cero:

a)
$$f(x) = x^3 - x^2$$

© Valores que anulan la derivada segunda (ya calculada en el ejercicio anterior) :

$$f''(x) = 0$$
; $6x - 2 = 0 \Rightarrow x = 2/6 = 1/3$

O Derivada tercera en los puntos que anulan la segunda derivada :

f " (x) = 6 \Rightarrow f " (1/3) = 6 > 0, hay un punto de inflexión en x = 1/3.

b)
$$f(x) = 2x^3 - 3x^2$$

© Valores que anulan la derivada segunda (ya calculada en el ejercicio anterior) :

$$f''(x) = 0$$
; $12x - 6 = 0 \Rightarrow x = 6/12 = 1/2$

© Derivada tercera en los puntos que anulan la segunda derivada :

f " (x) = $12 \Rightarrow$ f " (1/2) = 12 > 0, hay un punto de inflexión en x = 1/2.

c)
$$f(x) = \frac{x^2+1}{x-1}$$

© Valores que anulan la derivada segunda (ya calculada en el ejercicio anterior) :

$$f''(x) = 0 \Rightarrow \frac{4}{(x-1)^3} \neq 0 \Rightarrow \text{No existe punto de inflexión}$$

d)
$$f(x) = \sqrt{x^2 - 1}$$

Valores que anulan la derivada segunda (ya calculada en el ejercicio anterior):

$$f''(x) = 0 \Rightarrow \frac{-1}{(x^2-1)\sqrt{x^2-1}} \neq 0 \Rightarrow \text{No tiene punto de inflexión.}$$

e)
$$f(x) = \sqrt{2 - x^3}$$

Valores que anulan la derivada segunda (ya calculada en el ejercicio anterior):

$$f''(x) = 0 \Rightarrow \frac{_{3x^4 - 24x}}{_{4(2 - x^3)}\sqrt{_{2 - x^3}}} = 0 \Leftrightarrow 3x^4 - 24x = 0 \Leftrightarrow x(3x^3 - 24) = 0 \begin{cases} x = 0 \\ x = \sqrt[3]{\frac{24}{3}} = 2 \end{cases}$$

© Derivada tercera en los puntos que anulan la segunda derivada :

$$f'''(x) = \frac{\frac{(12x^3 - 24) \cdot 4 \cdot (\sqrt{2 - x^3})^3 - (3x^4 - 24x) \cdot 4 \cdot 3(2 - x^3) \cdot \frac{-3x^2}{2\sqrt{2 - x^3}}}{16(\sqrt{2 - x^3})^6} = \frac{\frac{4(12x^3 - 24)(2 - x^3) + 18x^2(2 - x^3)(3x^4 - 24x)}{\sqrt{2 - x^3}}}{16(\sqrt{2 - x^3})^6} = \frac{2(2 - x^3)[2(12x^3 - 24) + 9x^2(3x^4 - 24x)]}{16\sqrt{(2 - x^3)^7}} = \frac{(2 - x^3)[2(12x^3 - 24) + 9x^2(3x^4 - 24x)]}{8(2 - x^3)^3\sqrt{2 - x^3}} = \frac{24x^3 - 48 + 27x^6 - 216x^3}{8(2 - x^3)^2\sqrt{2 - x^3}} = \frac{27x^6 - 192x^3 - 48}{8(2 - x^3)^2\sqrt{2 - x^3}}$$

x = 2 no pertenece al dominio de f(x) pues anula el denominador, luego sólo queda ver el signo de :

$$f'''(0) = \frac{-48}{8 \cdot 4 \cdot \sqrt{2}} = -\frac{3}{2\sqrt{2}} < 0$$
, punto de inflexión en $x = 0$.

$$f) f(x) = tgx$$

© Valores que anulan la derivada segunda (ya calculada en el ejercicio anterior) :

$$f''(x) = 0 \Rightarrow \frac{2senx}{cos^3x} = 0 \iff senx = 0 \iff x = 180^{\circ}k \ y \ k \in Z$$

O Derivada tercera en los puntos que anulan la segunda derivada :

$$\begin{split} f'''(x) &= \frac{2\cos x \cdot \cos^3 x - 2 \text{sen} x \cdot 3 \cos^2 x \cdot (-\text{sen} x)}{\cos^6 x} = \frac{2\cos^2 x [\cos^2 x + 3 \text{sen}^2 x]}{\cos^6 x} = \frac{2(\cos^2 x + 3 \text{sen}^2 x)}{\cos^4 x} = \\ &= \frac{2(\cos^2 x + \sin^2 x + 2 \text{sen}^2 x)}{\cos^4 x} = \frac{2(1 + 2 \text{sen}^2 x)}{\cos^4 x} = \frac{2 + 4 \text{sen}^2 x}{\cos^4 x} \end{split}$$

$$f'''(180k) = \frac{{}^{2+4sen^2(180k)}}{{}^{\cos^4(180k)}} = \frac{{}^{2+0}}{{}^{14}} = 2 > 0 \text{ punto de inflexión en } x = 180k = \pi k$$

$$\Diamond \Diamond \Diamond \Diamond \Box \Box \Diamond \Box \Diamond \Diamond \Diamond \Diamond$$

6 Determina los intervalos de curvatura de las siguientes funciones :

a)
$$f(x) = x^3 - x^2 - 8x$$

Discontinuidades.

Como es una función polinómica, es continua en R.

Derivada segunda

$$f'(x) = 3x^2 - 2x - 8$$
; $f''(x) = 6x - 2$.

Ceros de la derivada segunda.

$$f''(x) = 0 \Rightarrow 6x - 2 = 0 \Leftrightarrow x = 1/3$$

Tabla en que estudia la curvatura a partir del signo de la derivada segunda :

$$f''(0) = 6.0 - 2 = -2 < 0.$$

$$f''(1) = 6 \cdot 1 - 2 = 4 > 0$$
.

X	(- ∞, 1/3)	1/3	(1/3 , ∞)
f "(x)	< 0	0	> 0
f (x)	CC	P.I.	СХ

b)
$$g(x) = x^3 - 3x + 2$$

Discontinuidades.

Como es una función polinómica, es continua en R.

Derivada segunda

$$g'(x) = 3x^2 - 3$$
; $g''(x) = 6x$.

Ceros de la derivada segunda.

$$g''(x) = 0 \Rightarrow 6x = 0 \Leftrightarrow x = 0$$

Tabla en que estudia la curvatura a partir del signo de la derivada segunda :

$$g''(-1) = 6 \cdot (-1) = -6 < 0.$$

$$g''(1) = 6 \cdot 1 = 6 > 0$$
.

X	(-∞,0)	0	(0,∞)
g"(x)	< 0	0	> 0
g(x)	CC	P.I.	СХ

c) h(x) =
$$\frac{x^2}{1-x}$$

Discontinuidades.

Como es una función racional es discontinua en 1 - $x = 0 \Leftrightarrow x = 1$.

Derivada segunda

$$h'(x) = \frac{{}^{2x(1-x)-x^2(-1)}}{(1-x)^2} = \frac{{}^{2x-2x^2+x^2}}{(1-x)^2} = \frac{{}^{-x^2+2x}}{(1-x)^2} \Rightarrow h''(x) = \frac{(-2x+2)\cdot(1-x)^2-(-x^2+2x)2(1-x)(-1)}{(1-x)^4} = \frac{(-2x+2)\cdot(1-x)^2-(-x^2+2x)(1-x)(-1)}{(1-x)^4} = \frac{(-2x+2)\cdot(1-x)^2-(-x^2+2x)(1-x)(-1)}{(1-x)^4} = \frac{(-2x+2)\cdot(1-x)^2-(-x^2+2x)(1-x)(-x)}{(1-x)^4} = \frac{(-2x+2)\cdot(1-x)^2-(-x^2+2x)(1-x)}{(1-x)^4} = \frac{(-2x+2)\cdot(1-x)^2-(-x^2+2x)(1-x)}{(1-x)^4} = \frac{(-2x+2)\cdot(1-x)^2-(-x^2+2x)(1-x)}{(1-x)^4} = \frac{(-2x+2)\cdot(1-x)^2-(-x^2+2x)}{(1-x)^4} = \frac{(-2x+2)\cdot(1-x)^2-(-x)^2$$

$$=\frac{(1-x)[(-2x+2)(1-x)+2(-x^2+2x)]}{(1-x)^4}=\frac{(-2x+2)(1-x)+2(-x^2+2x)}{(1-x)^3}=\frac{-2x+2+2x^2-2x-2x^2+4x}{(1-x)^3}=\frac{2}{(1-x)^3}$$

Ceros de la derivada segunda. Intervalos

h''(x) = 0, pero como la derivada segunda no se anula $(2 \neq 0) \Rightarrow$ No tiene ceros

Los intervalos de signo constante se forman pues con las discontinuidades:

$$(-\infty, 1), (1, \infty)$$

Tabla en que estudia la curvatura a partir del signo de la derivada segunda :

$$h''(0) = \frac{2}{(1-0)^3} = 2 > 0$$
 y $h''(2) = \frac{2}{(1-2)^3} = \frac{2}{-1} = -2 < 0$

X	(- ∞, 1)	1	(1,∞)
h"(x)	> 0	∄	< 0
h(x)	СХ	A. vertical	CC

d)
$$i(x) = 2senx$$

Discontinuidades.

Como es una función seno es continua en R.

Derivada segunda

$$i'(x) = 2 \cos x \Rightarrow i''(x) = -2 \operatorname{sen} x$$

Ceros de la derivada segunda.Intervalos

$$i''(x) = 0 \Rightarrow -2senx = 0 \Rightarrow senx = 0 \Leftrightarrow x = k\pi y k \in Z$$

Los intervalos de signo constante son (k π , (k+1) π)

Tabla en que estudia la curvatura a partir del signo de la derivada segunda :

$$i''(-\frac{\pi}{4}) = -2 \operatorname{sen}(-\frac{\pi}{4}) = -2 \cdot \frac{-\sqrt{2}}{2} = \sqrt{2} > 0$$

$$i''(\frac{\pi}{4}) = -2sen(\frac{\pi}{4}) = -2 \cdot \frac{\sqrt{2}}{2} = -\sqrt{2} < 0$$

$$i''(\frac{7\pi}{6}) = -2sen(\frac{7\pi}{6}) = -2 \cdot \frac{-1}{2} = 1 > 0$$

X	•••	$(-\pi, 0)$	0	(0,π)	π	$(\pi, 2\pi)$	•••
i"(x)		> 0	0	< 0	0	> 0	
i(x)		СХ	P.I.	CC	P.I.	CX	

e)
$$j(x) = \cos(x - \frac{\pi}{2}) = \sin x = \frac{1}{2}i(x)$$

i(x) y j(x) sólo se diferencian en una constante (1/2), todo lo dicho para i(x) es válido para j(x), es decir tienen los mismos intervalos de concavidad y convexidad.

f)
$$k(x) = xe^x$$

Discontinuidades.

Como es una función exponencial es continua en ${\mathbb R}$.

Derivada segunda

$$k'(x) = e^x + x \cdot e^x = e^x (x+1)$$
; $k''(x) = e^x (x+1) + e^x = e^x (x+2)$

Ceros de la derivada segunda.Intervalos

$$k''(x) = 0 \Rightarrow e^{x}(x+2) = 0 \Leftrightarrow \left\{ \begin{array}{ll} e^{x} = 0 & x = -\infty \\ x+2 = 0 & x = -2 \end{array} \right\}$$

Los intervalos de signo son :

$$(-\infty, -2), (-2, \infty)$$

Tabla en que estudia la curvatura a partir del signo de la derivada segunda :

$$k''(-3) = e^{-3}(-3 + 2) = -e^{-3} = -1/e^{3} < 0$$

$$k''(0) = e^0 (0 + 2) = 1.2 = 2 > 0$$

X	(- ∞, -2)	-2	(-2 , ∞)
k"(x)	< 0	0	> 0
k(x)	CC	P.I.	СХ

7 Representa gráficamente las funciones de los apartados a, b y c del ejercicio N^o **6**.

a)
$$f(x) = x^3 - x^2 + 8x$$

① Dominio

 $Dom(f) = \mathbb{R}$, pues es una función polinómica.

2 Simetría

$$f(-x) = (-x)^3 - (-x)^2 - 8(-x) = -x^3 - x^2 + 8x \neq f(x) \Rightarrow No tiene$$

3 Periodicidad.

No es periódica.

4 Cortes con los ejes.

 \diamond Con el eje de abscisas, horizontal u **OX** (f(x) = 0)

$$x^{3} - x^{2} - 8x = 0 \iff x(x^{2} - x - 8) = 0 \Rightarrow \begin{cases} x = 0 \\ x^{2} - x - 8 = 0 \end{cases} \quad x = \frac{1 + \sqrt{1 + 33}}{2} = 3'37 \\ x = \frac{1 - \sqrt{33}}{2} = -2'37 \end{cases}$$

Luego los puntos de corte son (0,0), (3'37,0) y (-2'37,0)

♦ Con el eje de ordenadas, vertical u OY (x = 0).

f(0) = 0, luego es el origen (0,0).

S Asíntotas y ramas infinitas

■ Al ser una función polinómica no tiene asíntotas verticales, ni horizontales ni oblicuas.

Ramas infinitas :

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x^3 - x^2 - 8x) = (-\infty)^3 = -\infty$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (x^3 - x^2 - 8x) = (+\infty)^3 = +\infty$$

© Monotonía y extremos relativos.

• Discontinuidades:

Es continua en R, por ser polinómica.

• Ceros de la derivada primera.

$$f'(x) = 0 \Rightarrow 3x^2 - 2x - 8 = 0 \Leftrightarrow \left\{ \begin{array}{l} x = \frac{2 - \sqrt{4 + 96}}{6} = \frac{-8}{6} = -\frac{4}{3} \\ x = \frac{2 + \sqrt{4 + 96}}{6} = \frac{12}{6} = 2 \end{array} \right\}$$

Intervalos y tabla :

X	(- ∞, -4/3)	-4/3	(-4/3, 2)	2	(2,∞)
f '(x)	> 0	0	< 0	0	> 0
f(x)	Ø	\cap	₪	U	Ø

Matemáticas aplicadas a las CC.SS. II

⑦ Curvatura y puntos de inflexión.

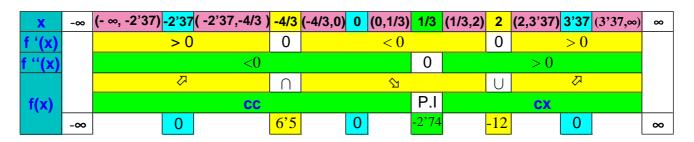
©Ceros de la derivada segunda

$$f''(x) = 6x - 2 \Rightarrow 6x - 2 = 0 \Leftrightarrow x = 2/6 = 1/3$$

Intervalos y tabla

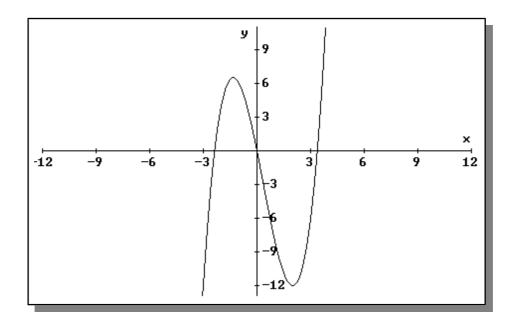
X	(- ∞, 1/3)	1/3	(1/3 , ∞)	
f "(x)	< 0 0		> 0	
f(x)	CC	P.I.	СХ	

® Resumen de la información obtenida:



9 Dibujo de la curva de la función:

Con la información de la tabla anterior se traza la curva de la función :



b)
$$g(x) = x^3 - 3x + 2$$

① Dominio

 $Dom(g) = \mathbb{R}$, pues es una función polinómica.

2 Simetría

$$g(-x) = (-x)^3 - 3 \cdot (-x) + 2 = -x^3 + 3x + 2 \neq g(x) \Rightarrow \text{No tiene}$$

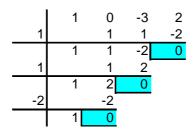
3 Periodicidad.

No es periódica.

4 Cortes con los ejes.

 \diamond Con el eje de abscisas, horizontal u **OX** (g(x) = 0)

 x^3 - 3x + 2 = 0, hay que probar por Ruffini entre div(2) = { ±1, ±2 }



Luego los puntos de corte son (-2, 0) y (1, 0)

♦ Con el eje de ordenadas, vertical u **OY** (x = 0).

$$g(0) = 2$$
, luego es $(0, 2)$.

⑤ Asíntotas y ramas infinitas

■ Al ser una función polinómica de grado superior a uno, no tiene asíntotas verticales, ni horizontales ni oblicuas.

Ramas infinitas :

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} (x^3 - 3x + 2) = (-\infty)^3 = -\infty$$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} (x^3 - 3x + 2) = (+\infty)^3 = +\infty$$

© Monotonía y extremos relativos.

• Discontinuidades:

Es continua en R, por ser polinómica.

• Ceros de la derivada primera.

$$g'(x) = 0 \Rightarrow 3x^2 - 3 = 0 \Leftrightarrow \left\{ \begin{array}{l} x = -\sqrt{\frac{3}{3}} = -1 \\ x = +\sqrt{\frac{3}{3}} = 1 \end{array} \right\}$$

• Intervalos y tabla :

X	(- ∞, -1)	-1	(-1, 1)	1	(1,∞)
g '(x)	> 0	0	< 0	0	> 0
g(x)	Ø.	\cap	₪	U	Z

⑦ Curvatura y puntos de inflexión.

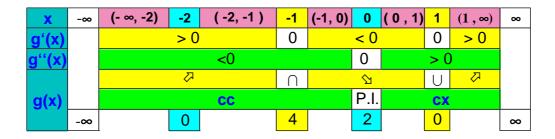
©Ceros de la derivada segunda

$$g''(x) = 6x \Rightarrow 6x = 0 \Leftrightarrow x = 0$$

Intervalos y tabla

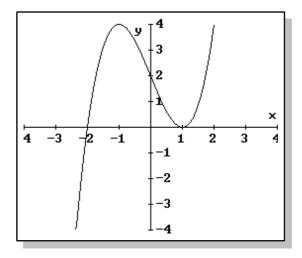
X	(- ∞, 0)	0	(0,∞)
g ''(x)	< 0	0	> 0
g(x)	CC	P.I.	СХ

® Resumen de la información obtenida:



9 Dibujo de la curva de la función:

Con la información de la tabla anterior se traza la curva de la función :



c) h(x) =
$$\frac{x^2}{1-x}$$

① Dominio

Al ser una función racional, no pertenecen al dominio los valores de x que anulan el denominador : $1 - x = 0 \Rightarrow x = 1 \Rightarrow Dom(h) = \mathbb{R} - \{1\}$

2 Simetría

$$h(-x) = \frac{(-x)^2}{1-(-x)} = \frac{x^2}{1+x} \neq h(x) \Rightarrow \text{No tiene}$$

3 Periodicidad.

No es periódica.

4 Cortes con los ejes.

 \diamond Con el eje de abscisas, horizontal u **OX** (h(x) = 0)

$$\frac{x^2}{1-x} = 0 \Leftrightarrow x^2 = 0 \Rightarrow x = 0$$

Luego el punto de corte es el (0,0)

♦ Con el eje de ordenadas, vertical u **OY** (x = 0).

h(0) = 0, luego es el origen (0,0).

S Asíntotas y ramas infinitas

□Verticales

x = 1 como hemos visto en el dominio pues

$$\lim_{x\to 1^{\mp}}h(x)=\pm\infty$$

$$\lim_{x \to -\infty} h(x) = \lim_{x \to -\infty} \frac{x^2}{1-x} = \frac{\infty^2}{1+\infty} = +\infty \text{ y } \lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \frac{x^2}{1-x} = \frac{\infty^2}{-\infty} = -\infty \text{ No tiene}$$

Oblicuas

Puede tener, pues no tiene horizontales:

Realizamos la división (x^2) : (-x + 1):

Luego la asíntota oblicua es y = -x - 1 por ambos lados.

6 Monotonía y extremos relativos.

• Ceros de la derivada primera.

$$h'(x) = \frac{2x - x^2}{(1 - x)^2} = 0 \Rightarrow 2x - x^2 = 0 \Leftrightarrow x(2 - x) = 0 \Rightarrow \left\{ \begin{array}{c} x = 0 \\ 2 - x = 0 \Rightarrow x = 2 \end{array} \right\}$$

• Intervalos y tabla :

Teniendo en cuenta la discontinuidad x = 1 y los ceros de h'(x), x = 0 y x = 2, la tabla queda :

X	(-∞, 0)	0	(0, 1)	1	(1,2)	2	(2,∞)
h '(x)	< 0	0	> 0	∄	> 0		< 0
h(x)	⅓	U	Ø	∄	Ø	Λ	₪

En donde, para averiguar el signo de cada intervalo, hemos tomado:

$$h'(-1) = \frac{2(-1) - (-1)^2}{(1 - (-1))^2} = \frac{-2 - 1}{4} = -\frac{3}{4} < 0; h'(\frac{1}{2}) = \frac{2\frac{1}{2} - (\frac{1}{2})^2}{\left(1 - \frac{1}{2}\right)^2} = \frac{1 - \frac{1}{4}}{\frac{1}{4}} = \frac{\frac{3}{4}}{\frac{1}{4}} = 3 > 0$$

$$h'(\frac{3}{2}) = \frac{2\frac{3}{2} - (\frac{3}{2})^2}{(1 - \frac{3}{2})^2} = \frac{3 - \frac{9}{4}}{\frac{1}{4}} = \frac{\frac{3}{4}}{\frac{1}{4}} = 3 > 0; h'(3) = \frac{2 \cdot 3 - 3^2}{(1 - 3)^2} = \frac{6 - 9}{4} = \frac{-3}{4} < 0$$

⑦ Curvatura y puntos de inflexión.

No es necesario hallarla para no complicar la resolución.

® Resumen de la información obtenida:

X	-∞	(-∞, 0)	0	(0,1)	1	(1,2)	2	-2	∞
h '(x)		< 0	0	>0	∄	> 0	0	< 0	
la (24)		₪	U	∠	∄	\bar{\bar{\bar{\bar{\bar{\bar{\bar{	\cap	⅓	
n(x)	+∞		0		A.V.		-4		

Dibujo de la curva de la función:

Con la información de la tabla anterior se traza la curva de la función :

